Efficiency Structured XML
(esXML / esDOM)
A Standard Binary Infoset and API

Stephen D. Williams

Sdw@lig.net swilliams@hpti.com http://sdw.st

Independent Researcher and Senior Technical Director
for High Performance Technologies, Inc.

Project site: http://www.esXML.org

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams 1
Aug. 7 2003 Copyright 2003 Stephen D. Williams

Agenda

e Introduction to esXML / esDOM

e Why — Status Quo is Painful:
— Serialization, IDL, RPC
— Parsing, Memory Allocation, Small Copies
— Programming Overhead

o What — Requirements, Paradigms, Solutions

e How — esXML / esDOM

— esXML — Elastic Memory, VPTRs, XML, COW,
Streaming

— esDOM API
e Other Efforts, Results, Outlook

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams
Aug. 7 2003 Copyright 2003 Stephen D. Williams

Context and Primary Goals

esXML is fully equivalent to XML 1.0 with new,
mostly better encoding

esXML can be fully converted to and from XML
1.0 at any point

esDOM is the preferred API, although other
APIs are easily possible with degraded
performance

esXML capable libraries should also support
XML 1.0 for debugging, configurable at
runtime; utilities will also easily convert

esXML is not a compression or serialization

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams 3
Aug. 7 2003 Copyright 2003 Stephen D. Williams

Efficiency Structured XML
(esXML)

o esXML is full XML semantics in a binary infoset
— Directly and efficiently modifiable
— Wire format and memory format are identical

— No parsing/serialization except at XML 1.0/esXML
boundaries (legacy, debug)

— Direct support for binary data (images), pointers,
and deltas/COW (versioning, session, streaming,
undo/exceptions, checkpoint/restart)

— Network and language portable
— Self-describing, not IDL or compression based

— Directly targets N-Tier XML component and

application environments, but has wide appllcablllty

Extreme Markup Languages "esXML / esDOM" Stephen D. Williams
Aug. 7 2003 Copyright 2003 Stephen D. Williams

Efficiency Structured DOM
(esDOM)

e esDOM is a collections/STL/DOM style API

— Provides minimalist interaction with application data
— Access similar to 3GL object and library get/set/find

— esDOM with esXML backend avoids:
o Data initialization, copy, and linking
e Memory allocation, deallocation, and garbage collection
e Language data structures for application/business objects
e Processing overhead related to data
conversion/serialization
— Supports scoped reference objects to maintain OO

— Supports advanced intermediation such as tracing,
secure access, event processing, rule engines

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams 5
Aug. 7 2003 Copyright 2003 Stephen D. Williams

Why esXML/esDOM?

Extreme Markup Languages
Aug. 7 2003

Speed and efficiency
Scalability

Broadened applicability
_ess preparation

_ess coding

_ess debugging

New semantics

Rich intermediation

"esXML / esDOM" - Stephen D. Williams
Copyright 2003 Stephen D. Williams

“Serialization Considered Bad”

o Flipside: “Parsing Considered Bad”
e Serialization/Parsing are not required

o Predates XML: basic to 3GL vs. files,
databases, and network communication

e Layering “compression” doesn’t help

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams 7
Aug. 7 2003 Copyright 2003 Stephen D. Williams

Interface Definition Languages

e Good as documentation, except:
— Enforcement by code generation generally

e Schemas/DDL are better
— Optional validation of data

e Non-self describing encodings are bad:

— Schema migration, versions, pre-arrangement
— IDL: CORBA, DCOM, ASN.1/0SI1*, WMPEG7
— Hand designhed: MPEG4, ONC-RPC

e Business applications are worst case

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams 8
Aug. 7 2003 Copyright 2003 Stephen D. Williams

Remote Procedure Calls

o Communication model affects efficiency and design
e Half-duplex, synchronous, ties up channel, >0(n)
e Assumes interaction semantics:

— Client/server roles

— One call, one response or many responses
(ODBC/SQL)

— Can't easily handle asynchronous, peer, out of
order responses.

o Scalability/Efficiency demands real asynchronous
message oriented communication and pub/sub for
some applications with easy management of many
APIs, versions, with standardized security, <O(n)

e SOAP supports both, usually done as RPC

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams
Aug. 7 2003 Copyright 2003 Stephen D. Williams

Parsing, Memory, Copies

e Text parsing and object creation costs a lot
e Binary parsing still costs

e Memory allocation / de-allocation / garbage collection
and object creation / destruction can greatly
outweigh other processing

e Copying large numbers of small items and setting
similar references has similar impact and breaks
zero-copy goals of efficient design

e These destroy and prevent economies of scale

e Hidden aspects such as poor locality of reference and
allocation overhead are important and avoidance of
these can provide extra efficiency

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams 10
Aug. 7 2003 Copyright 2003 Stephen D. Williams

Programming Overhead

e Every line of code not implementing business logic
and business rules is wasted time, effort,
maintenance, and performance

e Accepted wisdom for C++/Java is to write
setters/getters to intermediate object data

e Complex data structures and standard algorithms
achieved by collection/template libraries
— Standard use of high level API
— Representation is private to library

e IDL, stubs, versioning, data conversion take effort
and maintenance

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams
Aug. 7 2003 Copyright 2003 Stephen D. Williams

11

Programming Overhead’

e Single definition of business objects is preferred,
ex. schema

— Should not require repetition in each application,
language, and database

— Application code should be application code, with
little or no data or meta-data definition,
management, and conversion (serialization,
allocation)

e Need flexible intermediation, reification, and
in-memory transactions/savepoints/COW

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams 12
Aug. 7 2003 Copyright 2003 Stephen D. Williams

Goals

e Increase efficiency & remove overhead
e Improve development process / libraries

o Introduce certain semantics to 3GL
— Delta/COW, relative virtual pointers

e Portable, flexible, (proto) standard

e Support, but don‘t require token
compression, indexing, etc.

e Support in-place modification efficiently

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams 13
Aug. 7 2003 Copyright 2003 Stephen D. Williams

Requirements

Full implementation of all XML 1.X semantics
Support C++, Java, Perl, Python, etc.

Reduce or remove parsing/serialization

Fixed buffer memory management (pools, reuse)

Support arbitrary modification, I.e. frequently changing
application variables

Compact representation, but allow for amortization of
frequent change overhead

Support copy on write: sessions, versions, savepoints

Provide everything needed for business object
programming

Support arbitrary logical data structures - pointers
Support updates and streaming

Directly support binary inclusion without encoding

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams 14
Aug. 7 2003 Copyright 2003 Stephen D. Williams

New Paradigms

e Wire format and memory format are the same

— Avoid data conversion / serialization at network, file,
component, or database boundary

e Directly modifiable compact data structure

— Modification overhead is offset by better locality of
reference and avoiding other overhead

e Business objects always maintained in esXML
— Avoid creating data structures and code

e Advanced semantics for applications: delta,
comprehensive intermediation

o Global Efficiency: minimize effort to process,
store, communicate, program

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams 15
Aug. 7 2003 Copyright 2003 Stephen D. Williams

Solutions

e Portable, variably sized, binary structure
— Token/length equivalent to XML 1.0
— Supports fast depth or breadth first traversal

e Tunable Chunked buffers

o Elastic Memory
— Support holes and chunk block management
— Fast, low level delta/copy on write

o Virtual Pointers
— Sticky, cheap, tracking references
— Both ID/IDRef and precise offset

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams
Aug. 7 2003 Copyright 2003 Stephen D. Williams

16

Solutions’

e Tags/values/bodies still presumed to be text
o Optional tokenization tables
— Tags, attributes, values, body text
e Optional element indexes
e Object/doc GUID/UUID (possibly Tumblers)

e Possible standard compression in the future
— For bandwidth pinch — I0O/storage bound
— Not for normal processing — processing bound

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams
Aug. 7 2003 Copyright 2003 Stephen D. Williams

17

esXML vs. Traditional XML

esXML/esDOM

Traditional XML

esXML/esDOM

Traditional XML

Extreme Markup Languages

Aug. 7 2003

Processing Efficiency

I App Work I Application work represents typical ratio of N-Tier
O| esxmL |O application operations compared to overhead.
esDOM
Parse, memory allocation, object cne e
10 creation, data copy and App Serlallz_atlon. data Rlemary I0
. Work conversion and copy Manag.
conversion
Memory Efficiency
Memory Used [Single copy of data, no element/ohbject overhead.
M%“;:"V [Needs only a pool of fixed size chunk buffers.
Memory Used
Memory Operations
"esXML / esDOM" - Stephen D. Williams 18

Copyright 2003 Stephen D. Williams

esXML Structure

Element | Total Len | Name Value | Attr Name Value | Attr Value | Optional Index | Body Value | ...

Values are
Len/Data or

esXML Structured Data H TTT EVAVB EVAVAVIIIIBBEBEBEBEBEBEBEBEBEB EE Definition
Table
reference IDs

Virtual Memory | DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Elastic Memory< \

Elastic Memory Storage | pgpppPRRRDDDDDDD..DDDDD ||PPPRRRDDDD....DDD....DDD| /1y it veader

In memory, file, or wire
T Definition Tables

Chunk Chunk E Element

A Attribute
I Index
B Body Data
V Value

Copy on Write DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

B Block Reference
(COW) Base esXML P Virtual Pointer

R Range List/bitmap
D Raw Data

\ . Data Hole / Free /

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams 19
Aug. 7 2003 Copyright 2003 Stephen D. Williams

esXML Elastic Memory

e An intra-object virtual memory space

e Balances several requirements
— Compactness, efficient in-place modification
— Fast traversal, language/architecture portable
— Supports extended semantics

e Chunked data — tracked storage blocks, splits when needed
e Free space, gap management — optional ‘condensation’

e Each block may have any possible humber of 'holes' / gaps
o Fast support of delta layering

e Manages Virtual Pointers (vptrs)
— Indirect reference to elements/attributes/CDATA or offsets
— Vptrs remain valid regardless of inserts/deletes
— Does not require stable memory locations

— Referred to externally by a handle
Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams
Aug. 7 2003 Copyright 2003 Stephen D. Williams

20

esXML Deltas

e Unifies implementation of many similar semantics
through straightforward mechanism

— Delta (change) layers, Copy on Write (COW)
— Transactions, undo, savepoint/restart, session
— Similar to Ted Nelson Xanadu derivative document versions

e A Delta is an esXML object that refers to GUID (or
Tumbler) of base, read-only esXML object, recursively

e Handled by Elastic Memory layer, transparent to XML
e Many parallel deltas possible on the same base

e Can provide basis for shared context, message reuse

— IDL-like common schema and header-compression-like
message optimization

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams 21
Aug. 7 2003 Copyright 2003 Stephen D. Williams

esXML Tables

e Optional optimization by tokenization
e Tag and attribute names
e Tag, attribute, CDATA values
e Ideal range of techniques in flux
— Whole name/value occurrence
— Index key-style compression
— Phrase identification
— Text pooling
— Hash/index techniques
e Default to occurance at 'root' of esXML object

e (Can occur unabridged at any element level
— Needed for efficient insert/extract

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams
Aug. 7 2003 Copyright 2003 Stephen D. Williams

22

esXML Elements and Data
e Type tokens

e Variable size length indicators
— Efficient for small objects, capable of large

e Length based nesting, traversal

e Names / values, or table reference

e Binary data contained unencoded

o References, but not expression of vptrs

e Each element can have index
— Level or subtree

e Each element can have token tables
— Normally only at root and any indicated subroots

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams
Aug. 7 2003 Copyright 2003 Stephen D. Williams

23

esDOM API

e Primary desired semantics are 3GL element and
collection-style operations

o Fast Xpath reference, direct paths primary

e insert, append, set, get, presence, count, iterate
e create/factory, loadXML, saveXML

e |oadesXML, saveesXML — very fast, just I/O

o getesXML — return a 'scoped’ esXML reference
— 'chroot’ like confinement to subtree
— Supports objects hierarchies by multiple scoped references to
the same storage
e Intermediation — security, debugging, meta-processing

o Correct efficiency-errors in DOM

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams 24
Aug. 7 2003 Copyright 2003 Stephen D. Williams

esDOM API Sample

[/ * Factory Methods */
public esDOMInterface getesDOM(String path) throws esDOMException;
public esDOMInterface clone(String path) throws esDOMException;

/* Append, insert, and set esDOM */
public Node append(String path, esDOMInterface esdom) throws esDOMException;
public Node insert(String path, esDOMInterface esdom) throws esDOMException;
public Node set(String path, esDOMInterface esdom) throws esDOMException;

[/ * Append, Insert, Set data elements, converting non-string data types */
public Node append(String path, Object data) throws esDOMException;
public Node insert(String path, Object data) throws esDOMException;
public Node set(String path, Object data) throws esDOMException;

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams 25
Aug. 7 2003 Copyright 2003 Stephen D. Williams

esDOM API Sample’

[* Getter for String return value. */

public String get(String path) throws esDOMException;

public String get(String path, Object default) throws esDOMException;
[* Getters for data types other than String. */

public Integer getInteger(String path) throws esDOMException,
NumberFormatException;

public int getint(String path) throws esDOMException, NumberFormatException;

public Integer getInteger(String path, Object default) throws esDOMException,
NumberFormatException;

public int getint(String path, Object default) throws esDOMException,
NumberFormatException;

[* Utility, collection methods */

public int elementCount(String path);

public boolean elementExists(String path);

public void remove(String path) throws esDOMException;

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams
Aug. 7 2003 Copyright 2003 Stephen D. Williams

26

EsDOM Sample Usage

esDOM es = new esDOM(); /* new, from XML 1.0, from esXML */
es.append("/a", "test");

es.append("/b", 1);

es.append("/c", 1.1);

es.append("/d", false);

es.set("/b", 2);

es.insert("/aa", "test2");

es.insert("/a[2]/a", "test3");

es.append("/a", "test4");

String test = es.get("/a[3]"); /* "test4" */

test = es.get("/null”, “default”); /* “default”, could be value, NULL, or exception */
int count = es.elementCount("/a"); /* 3 */

esDOM esa = es.getesDOM("/a");

test = esa.get("/a"); /* "test3" */

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams 27
Aug. 7 2003 Copyright 2003 Stephen D. Williams

Other Efforts

e Types:
— Wire format compression
— Serialization/parsing automation
— Application specific ‘compiled” encoding
— XML Libraries: SAX/DOM
o SXML — Scheme S-expressions
e Bin-XML/BiM/BiX, WBXML, XER
e Millau, BOX, DSDL, LAML, StAX
o Xtalk, Xmill, ZML, XML short-tagging

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams
Aug. 7 2003 Copyright 2003 Stephen D. Williams

28

Outlook

e Designed to be suitable for eventual standardization & wide use
e Implementation of current design in progress

Immediate use in large, high volume projects
C++, Java; later Python, perl, php4, etc.
Experiment with first-class support in Python

Open Source license (LGPL or other commercial-use-allowed license)

Restrictions of all material for companies/subsidiaries which have been convicted
of anti-trust law violation

e Past implementations:

esDOM/Xerces (Java, PKI/validation intermediation)
esXML-lite (C++, MPEG4 player intermediate profile scene graphs)

e Soliciting comments, improvements, collaboration

e (oals and requirements are solid, current structure open to
drastic change / competitive open development

Extreme Markup Languages "esXML / esDOM" - Stephen D. Williams 29
Aug. 7 2003 Copyright 2003 Stephen D. Williams

